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Approximation of the effectiveness factor in catalytic pellets
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Abstract

The 1D model proposed by Burghardt and Kubaczka [Chem. Eng. Proc. 35 (1996) 65] to approximate the behavior of 3D catalytic
pellets has been recently found able to provide accurate results for evaluating effective reaction rates when its parameterσ is suitable
adjusted [Chem. Eng. Res. Des., submitted for publication]. This parameter represents the contraction of the cross-section available for
diffusion. A formulation coupling a first-order Galerkin approximation with a truncated asymptotic expansion is proposed here to evaluate
the effectiveness factor of single reactions in the range of interest−1/5 < σ < 5 [Chem. Eng. Res. Des., submitted for publication]. The
formulation provides a 3% level of precision for essentially all normal kinetics of practical interest and a large range of abnormal kinetics.
In particular, this conclusion includes reaction rates approaching a zero-order reaction, for which large deviations arise from the use of
previous approximations proposed in the literature. On the other hand, the extent of abnormal kinetics being accurately approximated is
significantly enlarged.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction and literature survey

Burghardt and Kubaczka[1] proposed a 1D geometric
model, hereafter called GC model, to approximate the be-
havior of 3D catalytic pellets. The GC model consists in a
body allowing mass flux on a single dimensionless coordi-
natez, 0 ≤ z ≤ 1, and presenting a cross-section of variable
area proportional to (zσ). According to the value of theshape
powerσ, the model reduces to a slab(σ = 0), an infinitely
long circular cylinder(σ = 1) or a sphere(σ = 2).

To approximate the behavior of a generic 3D pellet
shape, the external surface area and volume of the model
body are assumed to equal those of the actual pellet,Sp and
Vp, and according to Mariani et al.[2], σ is evaluated by
matching the behavior of the actual pellet at low reaction
rates. Some simple particle shapes can lead to high values
of σ, as a circular cylinder with a height to diameter ra-
tio 0.85 (σ = 3.25) or a cube(σ = 4.3). Valuesσ < 0
are not likely for catalytic pellets, but the important case
of monolith reactors with catalytic washcoat on channels
shows this feature[3]. The range of interest can be set as
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−1/5 < σ < 5. In this range, Mariani et al.[2] found that
the GC model is precise up to 0.7% for linear kinetics and
they estimated that the deviations will not rise above 2% for
non-linear kinetics outside the range of steady state multi-
plicity. Therefore, the GC model seems to be an accurate
mean to avoid 3D evaluations for effective reaction rates.

For actual application, the GC model will be most valu-
able in the case of multiple reactions, as it avoids the heavy
computational burden of having to solve a set of conserva-
tion equations in 3D. Nonetheless, we will restrain ourselves
in this contribution to a single reaction, with the purpose
of presenting an approximation to evaluate the effectiveness
factor without resorting to the numerical solution of the con-
servation equation.

Numerical codes and computer facilities have been de-
veloped up to such an extent that the evaluation of effective
reaction rates is far from being a numerically challenging
problem, provided that a few isolate calculations should
be made. However, it should be realized that relatively
novel catalytic reactors, as reverse-flow reactors and re-
active distillation processes, or more sophisticated models
for traditional reactors, including CFD simulations, can de-
mand thousands, or higher orders, of spatial and temporal
discretization points, in which the effective reaction rates
should be evaluated. Besides, the overall solution will most
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often have to be found iteratively. If in addition, operating
conditions or design parameters are being optimized, the
number of such evaluations will be augmented by a large
factor. It seems clear that a suitable approximation for
evaluating effective reaction rates will be desirable, even
considering nowadays computer speed.

A number of approximations forη have been presented
in the literature (e.g.[4–15]). Some of them have specific
purposes, as those of Szukiewicz[11,12] intended to evalu-
ate transient, in addition to steady state, solutions and those
of Ochoa and co-workers[13,14] intended to provide a fast
evaluation for low and intermediate Thiele modulus (Φ).
They are not suitable to cover the whole range ofΦ. For this
reason, they will not further discussed. All the quoted con-
tributions were originally intended to deal with any or all of
the discrete valuesσ = 0, 1, 2. Except the contribution of
Hong et al.[15] that can only be employed forσ = 2, the
other approximations can be readily adapted for continuous
values ofσ. However, only some of them can be used for
the whole range of interest−1/5 < σ < 5 for a given reac-
tion rate expression. Each approximation shows some other
distinguishing features, but some common conclusions can
be drawn.

For kinetics showing effective reaction orders (ne =
d ln r/d ln C) higher than around 0.5, most of the approxima-
tions provide a good estimation ofη in the applicable range
of σ values. Instead, when 0≤ ne < 0.5 the error increases
for all the approximations. In the limit, for the so-called
zero-order isothermal reaction (actually, a step function of
the reactant concentration) none of them can guarantee er-
rors less than 20% in the range 0< σ < 5. It is recalled
that low values ofne do not only arise from power-law rate
expressions, but also for the very important case of some
LHHW rate expression with significant inhibition effects.

For abnormal kinetics the approximations of Wedel and
Luss[4]; Gottifredi et al.[6], Gottifredi et al.[8] and Yin and
Li [10] can be employed, although the errors rapidly increase
as the magnitude of the maximum rate increases. This is
expectable, as these approximations join, by means of a
suitable expression, the limiting behavior ofη asΦ → 0 and
Φ → ∞ and, therefore, the position and magnitude of the
maximum can hardly be predicted from such information.

The aim of this work is to present for the whole range
−1/5 < σ < 5 a procedure capable to approximate the
effectiveness factorη for essentially all normal kinetics of
practical interest and for a wide range of abnormal kinet-
ics. Special emphasis has been put in establishing the pre-
cision level and the limit of application of the proposed
formulation.

From the previously summarized analysis, it was con-
cluded that knowing the limiting behavior ofη atΦ → 0 and
Φ → ∞ is not enough to deal with strongly abnormal kinet-
ics. Based on this observation, the first-order Galerkin (FOG)
approximation is adopted. It is well known that the FOG ap-
proximation is accurate and computationally efficient[16]
from low to intermediate values ofΦ. A critical valueΦ̂ is

defined for the application of the FOG approximation and for
Φ > Φ̂ a truncated expansion in terms of 1/Φ is employed.

2. The formulation to approximate η

The problem to solve for a single reaction is:

z−σ d

dz

(
zσDA(CA)

dCA

dz

)
= L2rA(CA) (1)

CA = CAs (z = 1); dCA

dz
= 0 (z = 0) (2)

whereA is the limiting reactive species andL is the diffusion
length,L = �(1 + σ), � = Vp/Sp.

A dimensionless dependent variableY is defined as

Y = 1

JA

∫ CA

CAe

DA(CA)dCA;

JA =
∫ CAs

CAe

DA(CA)dCA (3)

whereCAe is the equilibrium concentration. In the case that
DA(CA) is constant,JA = DA(CAs −CAe) andY = (CA −
CAe)/(CAs − CAe). Eqs. (1) and (2)become

z−σ d

dz

(
zσ

dY

dz

)
= (1 + σ)2Φ2r(Y) (4)

Y(1) = 1; Y ′(0) = 0 (5)

wherer = rA/rAs, and

Φ2 = �2 rAs

JA
(6)

It is noted that with the given definition ofY, r = 0 atY = 0.
The effectiveness factor is the average dimensionless rate

η = (1 + σ)

∫ 1

0
r zσ dz (7)

The formulation employed in this work to evaluateη is
presented inTable 1. The two approximations employed will
be described in the following paragraphs.

The first-order Galerkin method is employed in the lower
range ofΦ. The formulation described in Chapter 2 of[16]
is used for FOG. It is based on the approximation

Y = 1 + (Y0 − 1)(1 − u) (8)

whereu = z2 andY0 = Y(0) is the parameter to be deter-
mined. The integral of the residuals ofEq. (4)weighted by
(1−u) over the pellet volume is evaluated by a Gauss–Jacobi
(weighting function [(1−u)u(σ−1)/2]) quadrature. Then, the
quadrature points are the zeros{ui} of the Jacobi polyno-
mialsPN (u) defined by∫ 1

0
[(1 − u)u(σ−1)/2]ujPN(u)du = 0; j = 0, . . . , N − 1

(9)
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Table 1
Formulation of the proposed approximation

First-order Galerkin approximation(used whenΦ ≤ Φ̂)

ηG(Φ) = 1 − 2

3 + σ

N∑
i=1

ωi

1 − r(Yi)

1 − ui
(T1)

where
Yi = 1 + (Y0 − 1)(1 − ui) (T2)

1 − Y0 = 1
2(1 + σ)�2R(Y0); R(Y0) = ∑N

i=1ωir(Yi) (T3)

Φ̂ = min[Φ0, ΦM] (T4)

where

Φ2
0 = 2

(1 + σ)R(0)
; Φ2

M = 9
(1 + σ/5)

(1 + σ)2
ηG(Φ0) (T5)

Asymptotic approximation(used forσ ≤ 3, Φ > Φ̂)

ηB(Φ) = β1

Φ
+ β2

Φ2
+ β̂

Φ3
(T6)

where

β1 = [P(1)]0.5; β2 = − σ

(1 + σ)β1

∫ 1

0
[P(λ)]0.5 dλ;

P(λ) = 2
∫ λ

0 r(Y)dY

(T7)

β̂ = Φ̂3ηG(Φ̂) − β1 Φ̂
2 − β2 Φ̂ (T8)

Eq. (T3) in Table 1is the resulting expression that allows
the evaluation ofY0. {ωi} is the set of weighting factors of
the quadrature just described, normalized to

∑
ωi = 1. For

N = 2 (FOG2)

u1,2 = (3 + σ) ∓ √
12(3 + σ)/(7 + σ)

9 + σ
;

ω1 = u2 − (1 + σ)/(5 + σ)

u2 − u1
; ω2 = 1 − ω1 (10)

Once Y0 is evaluated,η from Eq. (7) is calculated by
a Radau (end-pointu = 1)–Jacobi (weighting function
u(σ−1)/2) quadrature. The same set{ui} of quadrature
points applies, and the corresponding weighting factors can
be written in terms of{ωi}. Recalling thatr(1) = 1, the
final result is that inEq. (T1).

If N = 1 is chosen, the method becomes the one-point
orthogonal collocation (1POC) method described by Villad-
sen and Michelsen[16]. The general case withN quadrature
points will be referred as FOGN method. It is anticipated
that FOG2 will be the recommended choice in most cases,
on the basis of results obtained from numerical experiments.

The solution from FOG,ηG, is used up toΦ = Φ̂,
Eq. (T4), whereΦ0 (Eq. (T5)) makesY0 = 0 in the solu-
tion of Eq. (T3). Note that the evaluation ofηG(Φ0) from
Eq. (T1)does not require any iteration, as it corresponds to
Y0 = 0 and thusr(Yi) ≡ r(ui) (Eq. (T2)). Further remarks
about FOG in general and the definition ofΦ̂ in particular
can be found in Keegan et al.[17].

At Φ > Φ̂, the proposed approximationηB (Eq. (T6) in
Table 1) is a truncated expansion ofη in terms of(1/Φ). The

coefficientsβ1 andβ2 (Eq. (T7)) are evaluated analytically
(e.g. from Gonzo and Gottifredi[18]), while β̂ (Eq. (T8))
provides continuity with the FOG approximation.

For a zero-order reaction or normal LHHW kinetics be-
having alike,ηB shows a small maximum shortly afterΦ̂
(=Φ0 in these cases) whenσ > 3. Although not very impor-
tant in magnitude, this kind of errors is undesirable. In the
present range of interest, 3< σ ≤ 5, we suggest using the
solution forσ = 3 with a suitable scaled Thiele modulus,
as follows. Define

Φ2
S = Φ2

[
S0(Φ̂)

2
σ=3 + Φ2

S∞(Φ̂)2σ=3 + Φ2

]
;

S0 = 96

(1 + σ)(3 + σ)
, S∞ = 64

(1 + σ)2
(11a)

Then,

η = η(ΦS)σ=3 (3 < σ ≤ 5) (11b)

where(Φ̂)σ=3 is the value ofΦ̂ (Table 1) calculated with
σ = 3 andη(ΦS)σ=3 is the value from the algorithm in
Table 1atΦS andσ = 3.

It is worth recalling the number of times thatr(Y) should
be calculated for the algorithm inTable 1. WhenΦ ≤ Φ̂,
ηG(Φ0) demandsN calculations ofr(Y) and the iterative pro-
cess forηG(Φ) demands about 3N calculations. For FOG2,
this implies eight evaluations in all.

WhenΦ > Φ̂, β1 andβ2 (Eq. (T7)) should be numerically
evaluated, for which 10 calculationsr(Y) were employed.
These should be added to theN calculations forηG(Φ0) and,
just in the caseΦ̂ = ΦM (Eq. (T4)), the 3N calculations
for ηG(ΦM). More details about computational aspects are
discussed by Keegan et al.[17].

3. Accuracy of the proposed formulation

We will consider forr = rA/rAs expressions of the fol-
lowing form,

r = (1 + A)d

(1 + AC)d
exp

(
γβ(1 − C)

1 + β(1 − C)

)

×
(
Cn − Cn

e(Q/Qe)
m

1 − Cn
e(Qs/Qe)m

)
. (12)

C is the limiting-species dimensionless concentration,C =
CA/CAs, andQ represents the dimensionless concentration
of a product,Q = CQ/CAs, that is assumed to be stoichio-
metrically related toC according toQ = Qs + 1 − C. The
equilibrium concentrationC = Ce is taken as a parameter
andQe follows from stoichiometry. The diffusivityDA will
be taken as a constant, so variablesC andY are related by
C = Y(1 − Ce)+ Ce. The reaction ordersn, m are parame-
ters which should be assigned to complete the definition of
the driving force inEq. (12).

The inhibition term(1+AC)d involves two further param-
eters, the dimensionless adsorption constantA = KA CAs



110 S.D. Keegan et al. / Chemical Engineering Journal 94 (2003) 107–112

Table 2
Maximum errors for FOG approximation (FOG2, unless otherwise stated) and conditions at which they take place

Group Type of kinetic expression and parameter ranges Maximumε (%) Conditions

A Irreversible nth order endothermic reactions: n = 0–3, (γβ) = −5,
β = −0.2

2.8 σ = 4; n = 0

B Irreversible LHHW reactions: n = d = 1, 2; A = 0–30; isothermal
and endothermic (γβ) = −5; β = −0.2 cases.

2.4 σ = 4; n = d = 2; A = 20; endothermic

C Reversible reactions: n = m = 0.5; Qs = 0; Ce = 0.5, 0.9;
isothermal, endothermic (γβ) = −5; β = −0.2 and exothermic
(γβ) = 5; β = 0 cases.

3.1 σ = 1; Ce = 0.9; endothermic

D Irreversible exothermic nth order reactions, DMAX ∼= 1: n = 0–3. 2.8 σ = 0; n = 2
E Irreversible LHHW reactions(d > n), DMAX ∼= 1: isothermal (n, d, A) =

(1, 2, 4.3; 0.5, 1, 8) and exothermic (n, d, A) = (0.5, 1, 4.6); (γβ) = 0.3;
β = 0 cases.

3.2 σ = 5; (n, d, A) = (1, 2, 4.3)

F Irreversible nth order exothermic reactions, DMAX ∼= 2 (FOG3):
n = 0–3

3.8 σ = 5; n = 0.5

G Irreversible LHHW reactions(d > n), DMAX ∼= 2 (FOG3):
isothermal (n, d, A)=(1, 2, 6.4; 0.5, 1, 13) and exothermic (n, d, A) =
(0.5, 1, 9); (γβ) = 0.3; β = 0 cases.

3.6 σ = 5; (n, d, A) = (1, 2, 6.4)

and inhibition exponentd. The Prater (β) and Arrhenius
(γ) numbers define the exponential term inEq. (12) for
non-isothermal cases.

Reversibility, inhibition or thermal effects are not ac-
counted for ifA, (γβ) andCe, respectively, are taken as be-
ing zero. In the examples discussed below it will be assumed
that a given effect is not included unless the specific param-
eters are explicitly defined. Note that for the reversibility
effect three parameters should be stated:m, Ce andQs.

Some restrictions for the values of some parameters are
taken from the outset, in order to keep realistic values.
The reaction orders will be taken within 0≤ n, m ≤ 3.
The specific case identified withn = 0 actually means the
zero-order reaction,Cn = 1 if C > 0;Cn = 0 if C = 0. The
non-isothermal parameters will be constrained byγ ≤ 25
and|β| ≤ 0.2.

Given the set of parameters definingr(Y) and the value of
σ, the following relative error has been identified

ε = max
Φ

∣∣∣∣η(Φ) − ηnum(Φ)

ηnum(Φ)

∣∣∣∣
whereη is the value from the approximate formulation and
ηnum arises from the numerical solution ofEqs. (4) and (5).
From the way in which the approximate formulation has
been built up,ε always corresponds to some intermediate
value ofΦ. The results for a number of cases of practical
interest will be discussed next. Due to space limitations, most
of the results are summarized inTable 2. Further details and
comments can be found in Keegan et al.[17].

3.1. Normal kinetics

Normal kinetics are here understood as those in which
dr/dY is non-negative in the range 0≤ Y ≤ 1. The use of
FOG2 is assumed, unless the contrary is stated.

For irreversible, isothermalnth order reactions, the values
of ε are displayed inFig. 1 as a function ofσ. For n = 0,

Fig. 1. Errorε (%) for irreversiblenth order isothermal reactions.

the values ofη from the proposed approximation are exact
for the specific valuesσ = 1 andσ = 3. For the remaining
values ofσ, the approximation behaves very well, with a
maximum value (1.67%) atσ = 5. In general,ε keeps below
2% for all n andσ.

The errors adding an endothermic effect(γβ = −5) to
irreversiblenth order reactions were somewhat higher than
for the isothermal case, although not exceeding 3% (Table 2,
Group A).

Inhibition effects (LHHW kinetics) withd ≤ n do not
introduce much variation in precision respect to power law
kinetics. A number of examples were tried, either at isother-
mal conditions or with endothermic effects (Group B of re-
sults inTable 2).

As far asm > 1, the effect of the reversibility term in
Eq. (12)on the level of accuracy of the proposed approxima-
tion is not significant. However, ifm < 1 andQs = 0, the
derivative dr/dY tends to infinity atY = 1, causing fast vari-
ations of r close to the pellet surface. The deviations for a
highly limited reaction(Ce = 0.9), keepingn = m = 0.5, at
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isothermal, endothermic (γβ = −5; β = −0.2) and exother-
mic (γβ = 5; β → 0) conditions, are in general bounded
by 3%, except for some values slightly higher (seeTable 2,
Group C). Temperature variations become restrained by the
strong reversibility, even for the large value|γβ| = 5. When
lower values ofCe are tried(Ce = 0.5), the errors become
smaller than forCe = 0.9. Nonetheless, the caseCe = 0.5,
(γβ) = 5 is particularly interesting asr(Y) shows a minimum
and a maximum within 0< Y < 1 (this is actually an exam-
ple of abnormal kinetics). Consequently, the corresponding
curveη versusΦ also shows a minimum and a maximum.

3.2. Abnormal kinetics

It is very well known that strong exothermic or inhibi-
tion effects producing dr/dY < 0 lead to valuesη > 1 and
eventually to multiple solutions. The maximum value of
(−dr/dY) occurring within 0≤ Y ≤ 1, denoted asDMAX ,
has been found a suitable criterion to establish up to what
extent the approximation can be used with adequate level
of precision[17].

Exothermic and irreversiblenth order kinetics and values
of the product (γβ) such thatDMAX ∼= 1 were tested leading
to ε always below 3% (Table 2, Group D). Smaller values
of (γβ) produce smaller values ofε, on average, and always
less than 3%.

Two cases of isothermal and irreversible kinetics
(DMAX ∼= 1) with significant inhibition effectsn < d and
one case combining exothermic and inhibition effects were
also analised. The parameterA was again taken such that
DMAX ∼= 1 results. The errorε remains below 3%, except
for a few cases showing slightly higher values (seeTable 2,
Group E).

The examples shown up to this point allow to conclude
that FOG2 is able to approximate normal and abnormal ki-
netics showing values ofDMAX ≤ 1 within a precision of
around 3%.

On the other hand, rate expressions showing values of
DMAX increasingly larger than one lead to errors consistently
larger than 3%. It has been tried if higher values ofN could
enlarge the value ofDMAX , while maintaining the precision
around 3%. The approximation FOG3 can be judged as able
to maintain the desired level of precision up toDMAX = 2,
if some tolerance is allowed (up to 4%, see Groups F, G in
Table 2). Higher values ofN do not succeed to extend the
value ofDMAX above 2, showing that the FOG approxima-
tion (Eq. (8)) becomes limiting, rather than the precision of
the quadrature to evaluate the integrated residuals.

It is interesting to disclose the behaviour of the approx-
imation for abnormal kinetics beyond the analysed values
of DMAX . The effect ofA on ε for the already consid-
ered LHHW isothermal cases(n, d) = (1,2) and (n, d) =
(0.5,1) can be appreciated inFig. 2, using FOG2 andσ = 2
(sphere). At the largestA in Fig. 2, DMAX equals 4.48 and
3.71 ford = 2 andd = 1, respectively. In spite of these val-
ues largely exceeding the safe limitDMAX = 1 for FOG2,

Fig. 2. Comparison of errors (%) from Wedel and Luss (WL)[4] and
Yin and Li (YL) [10] expressions and FOG2, for LHHW reactions with
d > n andσ = 2.

the errors are still moderate, around 8.0%(d = 2) and 3.7%
(d = 1), and perhaps acceptable for some purposes. The
exact maximalη is 1.62 for (n, d,A) = (1,2,10), while
FOG2 predictsη = 1.66.

Also shown inFig. 2are the results from Wedel and Luss
[4] and Yin and Li[10] approximations, specially developed
for σ = 2. The errors from both expressions rapidly increase
asA increases, although for this particular value ofσ, Yin and
Li [10] approximation behaves better. The Gottifredi et al.
[6,8] approximations have been also tried for the conditions
in Fig. 2. They present similar results as those from Wedel
and Luss[4] approximation in the upper range ofA, but the
latter is more suitable at smallA.

4. Conclusions

A formulation coupling a first-order Galerkin approxima-
tion with a truncated asymptotic expansion is proposed to
evaluate the effectiveness factor of single reactions in the
range−1/5 < σ < 5 of the GC geometrical model (Table 1).
The formulation introduces an empirical criterion to shift
from the FOG to the asymptotic approximation, expressed
by Eq. (T4) in Table 1. In the range 3< σ < 5, the formu-
lation is not directly applied, but the results fromσ = 3 are
employed along with a scaled Thiele modulus,Eq. (11a).

The FOG2 option, employing two quadrature points, is
suggested for general purposes. FOG2 provides a 3% level
of precision for essentially all normal kinetics of practical
interest and abnormal kinetics restrained by a maximum neg-
ative slope(−dr/dY) = DMAX ∼= 1. In this way, FOG2 al-
lows very precise predictions for reaction rates approaching
a zero-order reaction, for which large deviations arise from
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the use of former approximations. On the other hand, the
extent of abnormal kinetics being accurately approximated
is significantly enlarged.

If some errors between 3 and 4% can be accepted, the
use the FOG3 approximation allows dealing with kinetics
showing up toDMAX = 2.
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